

NOVA
University of Newcastle Research Online

nova.newcastle.edu.au

Simon “Designing programming assignments to reduce the likelihood of cheating”.
Published in ACE '17 Proceedings of the Nineteenth Australasian Computing Education
Conference (Geelong, Vic. 31 January- 3 February, 2017) p. 42-47 (2017)

Available from: http://dx.doi.org/10.1145/3013499.3013507

Accessed from: http://hdl.handle.net/1959.13/1347177

http://dx.doi.org/10.1145/3013499.3013507
http://hdl.handle.net/1959.13/1347177

Author draft, pre-publication

Designing Programming Assignments to Reduce the
Likelihood of Cheating

Simon
University of Newcastle

Australia
simon@newcastle.edu.au

ABSTRACT
Understanding that there will always be some students who would
rather cheat on their assessments than complete them with
integrity, a number of authors have proposed rules of thumb for
writing assignments that will reduce the incidence of cheating.
Unfortunately, these rules are so general as to be of little help
when it comes to actually designing an assignment, and then
varying it from one course offering to the next. This paper uses a
case study, a programming assignment in cryptography, to
propose specific guidelines that can be applied to the design of
programming assignments to reduce the chance that students will
be able to copy from students in prior offerings of the course, and
to reduce the chance that students will be able to copy from
programs found on the web. The guidelines illustrated by the case
study are to begin with something basic, to add hidden
complexity, to add manifest complexity, to add levels of
complexity, to vary the assignment substantially in each
successive offering, and to have multiple test plans.

CCS Concepts
• Social and professional topics~Computing education

Keywords
Programming assignments; academic integrity; cheating;
computing education; cryptography.

1. INTRODUCTION
Cheating in university assessments is widespread and growing,
and it is a problem. Sheard et al [7] explain:

If we assume that assignment and class assessment tasks
are designed by educators to give students particular
learning experiences then it follows that students who
cheat on these tasks miss out on valuable learning
experiences, which in turn will impact on learning
outcomes. Students who engage in these practices are
exhibiting poor learning tendencies in their worst forms.

For well over four decades computing educators have been
coming up with ways of diminishing the incidence of cheating.
There are many different ways of cheating – Dick et al [3] list 53
– but some are more prevalent than others, and not all pertain to
all types of assessment item. For example, copying from another

student in an exam or altering an official university document is
unlikely to be particularly pertinent to the completion of a
programming assignment, while collaborating with other students
on work that is meant to be done individually, or copying material
from the internet without referencing, will be much more
applicable to this form of assessment.

2. CHEATING IN PROGRAMMING
ASSIGNMENTS
A number of authors have explicitly addressed the topic of
cheating in programming assignments. Dadamo [1] observes that

The problem with students cheating on out-of-class
programming assignments is a common one . . . In the
light of the tendency of faculty to reassign similar
assignments and the wealth of programming examples in
the literature, or from past courses, the instructor is faced
with the impractical task of developing original
assignments each term.

The clear message from this observation is that some students
will, where possible, source their assignments from former
students in the same course, or from programs found on the web,
rather than designing and writing the programs themselves. This
message is supported by Sheard et al [7]:

If students are given tasks for which solutions are readily
available to copy from textbooks or lecture notes they are
tempted to take short cuts and avoid the intended learning
experience.

In these circumstances, it is the responsibility of instructors to set
assignments that they have not set before, at least recently, and for
which solutions are unlikely to be found on the web. I know an
instructor who, in an introductory programming course, asked
students to write a program to play noughts and crosses. He was
surprised when many students handed in programs that they did
not appear to have written themselves.

The same responsibility is discussed by other writers. Dick et al
[3] suggest that cheating can be reduced by using ‘quality
assessment items’. Unfortunately, they do little to explain this,
except in saying that their survey respondents change assignments
from term to term:

If assignments remain the same from term to term,
students (who may have very little free time in their busy
schedules) will be tempted to cheat by copying another
student’s work, since the probability of being caught will
be lower (the work was from a different term). By
changing the assignments the instructor can not only
reduce cheating but can also develop better assignments
from term to term. This does require more effort for the
instructor, as new assignments need to be developed each
time a course is taught.

Author draft, pre-publication

The message from these authors is that instructors should set
quality assignments, with little guidance as to how to do that; and
that they should not use the same assignment from term to term,
with an acknowledgment that this requires substantial time and
effort.

Compounding the problem, most instructors like to set authentic
assignments, tasks that might actually be encountered in the real
world; but so many of these assignments have already been set
and solved numerous times at other institutions, and some of those
solutions have undoubtedly made their way into the public
domain.

Many students do not see it as cheating to copy substantially from
code that they find in the public domain [10]. I am familiar with
instructors who, when students can’t work out how to achieve
some programming goal, tell them to look it up on the web.
‘Coding by Google’ is becoming increasingly common, among
practising programmers as well as students. In a sense, though, it
doesn’t matter whether the students think of it as cheating. So
long as the goal is to see what students can design and write from
scratch, rather than how they can modify and adapt existing code,
that goal is best served by setting assignment tasks for which
solutions are unlikely to exist on the web.

The purpose of this paper is to add to the understanding of what
constitutes a quality assignment, in the sense of a plausible task,
which can be varied substantially from one term to the next, and
for which it is unlikely that there are existing solutions freely
available at the touch of a search button. By way of illustration,
the proposed guidelines will be explained in the context of a
particular programming assignment.

3. THE CONTEXT: CRYPTOGRAPHY
The assignment used to illustrate the guidelines is in the area of
classical cryptography: cryptography as it was applied to written
text long before the advent of computing.

Typical university cryptography courses [4, 11] begin with
classical text cryptography before moving on to contemporary
computational cryptography – although at least one [6] appears to
go direct to the computational material. Classical cryptography is
a fine source of material for text-processing programming
assignments. At the simplest level, the Caesar shift simply
replaces each letter with the letter that is a specified number
further on in the alphabet, cycling back to the start of the alphabet
as necessary. For example, nunquam ubi sub ubi with a Caesar
shift of 1 would become ovorvbn vcj tvc vcj. If the key (the shift)
is known, the message can be decrypted simply by applying the
corresponding negative shift. If the key is not known, decryption
is achieved by a simple brute force method: apply all 25 possible
shifts in turn to the ciphertext, and see which one results in
recognisable text.

The key for the Caesar cipher can be described either as a number
or as a letter. The former is the number of places by which letters
are to be shifted; the latter is the first letter of the shifted alphabet.
A shift of 4 can be easily implemented by writing the alphabet
beginning with E under the normal alphabet, then simply looking
up each letter of the message in the cipher alphabet.

Caesar cipher with a shift of 4 (or E)
Plain alphabet: abcdefghijklmnopqrstuvwxyz
Cipher alphabet E: efghijklmnopqrstuvwxyzabcd
Sample plaintext: nunquam ubi sub ubi
Ciphertext: ryruyeq yfm wyf yfm

The Vigenère cipher is like a series of different Caesar shifts,
controlled by a keyword. With a keyword of notepad, for
example, the first letter of the plaintext will be shifted by 13 (the
shift that replaces A with N), the second by 14 (A-O), the third by
19 (A-T), and so on. The keyword is applied cyclically, so the
shift of 3 (A-D) is followed by further shifts of 13, 14, 19, etc.

Vigenère cipher with a key of dog
Plain alphabet: abcdefghijklmnopqrstuvwxyz
Cipher alphabet d: defghijklmnopqrstuvwxyzabc
Cipher alphabet o: opqrstuvwxyzabcdefghijklmn
Cipher alphabet g: ghijklmnopqrstuvwxyzabcdef
Sample plaintext: message for encryption
Keyword repeated: dogdogd ogd ogdogdogdo
Ciphertext: psyvomh tuu stffeshorb

The Vigenère cipher was famously cracked by Charles Babbage.
The method is somewhat laborious, but because of Babbage’s
high place in computing history it is not uncommonly set as an
assignment in cryptography courses. Therefore, of course, it is not
too difficult to find programs written by others that apply
Babbage’s method to text encrypted with the Vigenère cipher.

The book cipher is somewhat similar to the Vigenère cipher, but
relies on an agreed passage of a specified text rather than a
repeating keyword. The key passage is longer than the message to
be encrypted, so there is no need to return to the start of the key.

Unlike the three methods mentioned so far, a substitution cipher
works not by shifting letters but by simple replacement of letters
in the known alphabet with the corresponding letters in a specific
jumbled alphabet. An arbitrarily jumbled alphabet is not at all
easy for sender and receiver to remember, but an agreed key
phrase can be used to generate a suitably jumbled alphabet. The
key alphabet is formed by taking each letter of the key phrase in
the order of its first occurrence, then the remaining letters of the
alphabet in alphabetic order. So, for example, the key phrase
zoological gardens would generate the key alphabet
zolgicardensbfhjkmpqtuvwxy, and the message would be
enciphered by replacing every A with Z, every B with O, every C
with L, and so on.

Substitution cipher with a key of zoological gardens
Plain alphabet: abcdefghijklmnopqrstuvwxyz
Substitution a’bet: zolgicardensbfhjkmpqtuvwxy
Sample plaintext: android or iphone
Ciphertext: zfgmhdg hm djrhfi

These and many more classical ciphers give rise to a wealth of
programming tasks. Generally speaking, encryption of a plaintext
message is relatively simple; decryption of a ciphertext is equally
simple if the key is known; and, except for the Caesar cipher,
decryption when the key is not known is orders of magnitude
more demanding.

The assignment used to illustrate this paper comes from the area
of classical cryptography, but not from a cryptography course.
The course, called Information Technology Applications, gives a
brief overview of three very different applications of computing,
to try to help students appreciate the breadth of uses to which
programming can be applied. In recent offerings the course has
covered computer vision, cryptography, and computational
modelling. The cryptography section of the course deals with
classical cryptography in the first week, the mechanisation of
cryptography in the second, and computational cryptography in

Author draft, pre-publication

the third. This compressed schedule means that there is little
scope for a major project. The cryptography assignment is
effectively restricted to classical cryptography – yet, according to
the principles espoused in section 2, it must change from term to
term, and must be written in some confidence that students will
not find existing packaged solutions. The contribution of this
paper is an explication of the approach that was taken to achieving
this goal.

4. TECHNIQUES TO MAKE AN
ASSIGNMENT LESS STANDARD
Within the constraints of the course under discussion, there are
limitations on what can be asked of students in a programming
assignment in the cryptography component. It might be interesting
to ask students to write a program to crack a cipher; but this tends
to require a great deal of analysis, probably more than is
appropriate for an assignment associated with just three weeks of
classes. Furthermore, the proper use of such a program would be
highly interactive: it could take the students many hours to
demonstrate that it works, and the marker would probably not be
able to assess its full capability without the students present.

At the other extreme, one might consider asking for a program
that encrypts or decrypts text with a specified key. This is perhaps
too simple; indeed, the tutorial exercises in cryptography had
students doing this with a spreadsheet rather than a program.

A compromise, perhaps more in line with the time spent on the
topic in classes, would be a program that decrypts a ciphertext,
but without having to work out the key from scratch. This is the
assignment that will be discussed in the remainder of this section.

It must be emphasised that while the case study presented here is
of a highly specific programming assignment in cryptography, the
intention is to present general principles or guidelines, some or all
of which can be applied to any programming assignment of
reasonable scope.

4.1 Start with something basic
Beginning with perhaps the simplest of classic ciphers, the Caesar
cipher, consider asking students to decrypt a Caesar-shifted
ciphertext with an unspecified key. This is an easy task: they
decrypt it in turn with each of the 25 possible keys, stopping when
they find the one that works, the one that produces recognisable
text. Ciphertexts are normally rendered without correct spaces or
punctuation, so they will have to recognise, say, eatdr inkan dbefa
tandd runk (enciphered text is often written in five-letter blocks),
or perhaps eatdrinkandbefatanddrunk, as Eat, drink, and be fat
and drunk; but with a little effort most students should be able to
do this. However, those who do not wish to write the program, or
cannot write it, can easily find programs on the web that will do
the same thing.

4.2 Add hidden complexity
Text cryptography works with letters. With a Caesar shift, A
might shift to E, B to F, and so on. Other characters are simply not
considered. Therefore the input and output streams are just letters,
as in the example above. When inspecting deciphered text to see if
it looks right, the lack of spacing and punctuation can actually
make it harder for some people to recognise the correctly
deciphered text. So we make it easier for the students by writing
the text in mixed case and leaving in all punctuation and spacing.
Rather than iexhvmroerhfijexerhhvyro or iexhv mroer hfije xerhh
vyro, the ciphertext will be Iex, hvmro, erh fi jex erh hvyro. No
interpretation will be required once the correct key has been

applied; the plaintext will appear as Eat, drink, and be fat and
drunk.

In fact, though, this makes the programming task significantly
more difficult. While the inspection is easier, the program now
has to preserve all non-letters, to shift the upper-case letters to
upper-case equivalents, and to shift the lower-case letters to
lower-case equivalents. While there will be many programs
available on the web to do the basic decryption, there will be
fewer that can deal with this extra feature.

4.3 Add manifest complexity
With the ‘simplification’ suggested above, students will have no
trouble recognising when they have tried the correct key, because
the plaintext message will be displayed in plain English.

Of course this will change if not all of the plaintexts are in
English. Students who will confidently recognise a passage in
English might not be so confident when the plaintext is in French,
or German, or some language less widely known. As soon as
students are told that some of the plaintexts will be in other
languages, the idea of trying every key and expecting to recognise
the correct output becomes less appealing.

There is a further complexity to this decision, one that many
students do not at first appreciate. Different languages have
different alphabets. So long as we are using the English alphabet,
we can shift letters up and down the alphabet using their ASCII
codes. For other alphabets, this is not possible. For example, in a
language with no J, such as Italian, H with a shift of 5 becomes N,
whereas in English, H with a shift of 5 becomes M. So the
alphabet for each language has to be provided for the students,
and their programs have to manage the shifts making explicit use
of that alphabet.

If students were encrypting their own texts and then decrypting
them, this problem would not be apparent; but when they are
decrypting provided ciphertexts, it will. A ciphertext produced
using one alphabet cannot be properly deciphered using another.

A further complexity associated with this choice is that some
alphabets have letters not found in English, such as the å, æ, and ø
found in Danish. Students are at first tempted just to ignore these
characters; but they are part of the 29-letter alphabet used to
perform the encryption, and they must therefore be used when
doing the decryption.

A related complexity is that the plaintext might include letters
from the English alphabet that are not members of the alphabet in
question. A passage in Italian might include J in a word borrowed
from another language. If so, the J must be treated just as the
spaces and punctuation marks: transmitted unchanged. If students
are using the provided alphabet as the basis for their decryption,
this will happen automatically; but if they are using the English
alphabet it will not, and they will not be able to successfully
decrypt the ciphertext.

When setting this assignment we provide ciphertexts and
alphabets for half a dozen languages, such as perhaps English,
French, German, Danish, Italian, and Malay, and tell students that
their programs should be able to successfully decipher all of them.

While there might be programs on the web that decipher
encrypted text, it is rather less likely that there will be programs
that do so on the basis of a provided alphabet, overlooking any
characters not in that alphabet.

Author draft, pre-publication

4.4 Add levels of complexity
To encourage incremental development, the assignment
specification tells students that most solution approaches can be
placed into one of four categories. The simplest, with which they
will undoubtedly begin, is solution by inspection: they decrypt the
ciphertext with each key in turn, inspecting the output to decide
which was the correct key. Students are told that this method will
clearly work for texts in English and other languages with which
they are familiar, and will quite possibly work for additional
languages if they are willing to make an informed guess.

Students are also told that they will be asked to demonstrate their
programs on three files that they have not seen before. The first
will be in English, and they should be able to decrypt it by
inspection. The second will be in a language that most of them
will never have seen, and decrypting this by inspection will
require a good understanding of the way words are formed in
languages generically. (One student some years ago agonised for
fully ten minutes over a Welsh text that he had decided was
Flemish. He narrowed it down to two possible keys, and ended up
picking the wrong one of the two.) The third file will be an
encryption of a text that has already been encrypted by some other
method, and that will therefore read like gibberish. With this file it
will be impossible to determine the correct key by inspection
except by a purely random guess.

The remaining three levels of approach involve increased
automation of the task, and rely on the fact that the supplied
alphabet for each language also includes the relative frequency of
each letter in the language. For example, E is generally accepted
to be the most frequent letter in English, making up 12.7% of
letters in a large enough passage of representative text; T is next,
at 9.1%; and Z is the least frequent, at less than 0.1%.

A level 2 approach will decipher the ciphertext by each key in
turn, and simply assign the most frequent letter in each of the
deciphered passages to the letter known to be most frequent in the
language. This will work surprisingly often in English, but less
often in a language such as Italian, whose most frequent letters are
E at 11.8%, A at 11.7%, and I at 11.3%. Even in English the
approach can be easily fooled. One of the sample English
passages provided for the students to practise with is an excerpt
from Georges Perec’s book ‘La Disparition’, translated into
English by Gilbert Adair as ‘A Void’; both the French novel and
the English translation are written entirely without the letter E.

A level 3 approach forms letter frequency tables both of the
known language and of each decryption in turn, and presents them
to the user for comparison, either as numerical tables or as
histograms. In examining the tables or histograms, the user is able
to deal with such problems as a zero-frequency E in English or a
jumbling of the most frequent vowels in Italian, because the
pattern of the remaining frequencies remains convincing.

A level 4 approach automates this comparison of frequency tables
using a chi-square approach or something similar. Such an
approach is impressively robust. The marvellous book ‘Eunioa’
by Christian Bök has a chapter in which the only vowel is A,
another in which the only vowel is E, and so on:

Troop doctors who stop blood loss from torn colons or
shot torsos go to Kosovo to work pro bono for poor
commonfolk, most of whom confront horrors born of long
pogroms. Good doctors who go to post-op to comfort folks
look for sponsors to sponsor downtrod POWs from Lvov
or Brno.

Excerpts from this book will clearly have letter frequencies
dramatically different from the accepted English distributions; but
a chi-square analysis of different decryptions invariably finds the
correct one.

Students who wisely choose to apply some form of automated
recognition can of course find chi-square programs on the web;
indeed, they are encouraged to do so. The goal of the exercise is
not to prevent them using any resources that they can find: it is to
ensure that whatever they might find, they will still have to do
substantial programming of their own in order to produce
something that meets the specifications.

4.5 Vary the assignment between offerings
A great deal of effort can go into devising a good programming
assignment, and academics are understandably reluctant to give
up a good assignment after a single use. But repeating an
assignment is a sure way to encourage cheating – not, now, from
the web, but from students who have already completed the
course. One obvious solution is to vary the assignment in such a
way that it retains most of its positive features, but looks
substantially different to the students. In cryptography this can be
achieved by changing the method of encryption.

If the first offering of the assignment used a Caesar shift, as in the
preceding descriptions, the next one might use the Vigenère
cipher.

The Caesar cipher has (in English) 25 possible shifts, and the
assignment relies on the idea of trying each shift in turn and
determining which is correct. So for a corresponding Vigenère
assignment we postulate a group of cryptographers who tend to
use the same keys over and over, a set of keys that is provided to
the students. Then the solution method becomes the same as the
solution for the Caesar cipher: try each key in turn and check the
output. The experienced programmer will see the great similarity
between these two assignments, noting that only the decryption
module needs rewriting. But it seems that the students
immediately notice the change in encryption method, and
conclude that there is nothing to gain from using a previous
assignment. There has been at least one exception to this
observation: I did once have a repeating student who used the
previous year’s Caesar assignment on Vigenère ciphertexts. Not
surprisingly, it failed to decrypt any of them correctly.

There are many other classical text ciphers available: book
ciphers, rail-fence ciphers, substitution ciphers, Playfair ciphers,
autokey ciphers, and more. Each of them is susceptible to the
same approach, of providing a set of keys, telling the students that
the ciphertext has been produced using one of these keys, and
asking them to determine which one.

4.6 Have multiple test plans
The bulk of the marks for the cryptography assignment are
awarded in an interactive session in the lab class. Students get
15% for correctly deciphering each of the three test files, 15% for
the interface, and 20% for the level of their solution (from 5% for
solving by inspection to 20% for fully automated decryption). The
remaining 20%, for programming style and documentation, is
allocated outside the class sessions.

As the instructor goes from student to student (or, in this case, pair
to pair), watching as each program is applied to the test files, it
would be very easy for one pair to tell another ‘the key for the
second file was cyffwrdd’. This is remedied by having a different
set of test files for each program to be assessed. The marker

Author draft, pre-publication

carries a USB drive with 20 or 30 ‘mystery bundle’ folders on it,
and chooses a different mystery bundle for each student or pair.

Each mystery bundle contains versions of the three ciphertexts,
the three corresponding alphabet files with letter frequencies, and
the three files of known keywords. The programs are expected, for
example, to decipher ciphertextMystery2.txt with one of the keys
in keysMystery2.txt using the alphabet in letfreq2.txt.

While of course this approach involves substantial extra
preparation time, the advantage is that every mystery bundle is
encrypted with a different set of three keys, so there is no benefit
to students in knowing which keys succeeded for their colleagues.

5. A DIFFERENT CONTEXT
The guidelines in the preceding section are presented in the
context of a programming assignment in classical cryptography;
however, they are not limited to that context. In this section we
will briefly consider a different assignment in a different context,
showing how some or all of the same principles can be applied.
Ultimately, of course, it is up to individual educators to decide
whether and how to apply the guidelines to their own
assignments.

For the second example, consider an assignment that requires
students to program a game, in this case a dice game. Hakulinen
notes that “The popularity of games has led to the idea of using
them in education and taking advantage of the engaging features
of games” [5 p26]. Accordingly, computer-based games are used
in many educational contexts, including as assessment items in
programming courses.

A web search for ‘popular dice games’ returns surprisingly few
games, even fewer of which involve complexity of the level
required in a reasonable programming task. So long as one can
base an assignment on a game that cannot be found by such
searches, there is a reasonable chance that programs to play the
game are not readily available on the web. I began many years
ago with a game called Groan [8], which is not particularly well
known. Since then I have invented a number of dice games of my
own: once you know what features to include, it’s not particularly
demanding. The following paragraphs indicate how the guidelines
of the preceding section might be applied to a dice game
programming assignment.

Start with something basic. Selection of a random number in a
specified range is a standard exercise in introductory
programming courses. If the language in use permits simple
drawing, it is no great extension to simulate the throw of a die by
displaying the die face corresponding to the resulting number. In
the course in which I use this assignment, the weekly exercises
include both of these tasks, so they should come at little or no cost
to students in the subsequent assignment.

Add manifest complexity. Games have rules, and these can be
made almost arbitrarily complex. For example, I have written a
game called Six of one in which there are six dice, with ones
playing a number of important roles. Players have a cumulative
score for the game, and at each turn can choose how many of the
six dice to roll – all at the same time. If their roll includes a single
one, they score nothing for the turn. If it includes two ones, they
score nothing for the turn and lose whatever score they have
accumulated in previous turns. If it includes three ones, they lose
the game outright. But if it includes four or more ones, they win
the game outright. If their roll includes no ones, the sum of the
dice is added to the cumulative score; except that if any three of

the dice show the same face value, the sum is doubled before
being added to the cumulative score. This complexity is clearly
evident to the students when they read the specification.

Add hidden complexity. Most dice games involve players taking
turns. This appears normal to students, but many fail to overlook
its intricacies. Even if the end of a turn is completely
straightforward (as in Six of one, where a turn ends after one roll
of the chosen number of dice), there is the matter of adjusting the
score of the active player, making the other player active, and
initiating the new turn. In other games, though, the change of turn
can be far more complex. In Groan, for example, a turn involves
repeatedly rolling a pair of dice until the turn ends. This can be
when the player chooses to end the turn, or when the player’s roll
includes a one, or when the player’s roll includes two ones – all of
which have different consequences. Like Six of one, the game is
won when a player’s score reaches or exceeds a specified goal;
another complexity that appears to elude many students is that this
should be detected as soon as the sum of the cumulative score and
the running score reaches the goal: the player should not have to
do anything, such as ending the turn, to tell the program to check
for the win.

Add levels of complexity. Some dice games can be played by a
single player, seeking ever better scores, in which case single-
player mode is generally the simplest form of the game to
program. A two-player game involves more complexity, and a
game in which the program plays against a human opponent is
more complex still. Then there are levels of complexity in the
strategy applied by the program. These levels can be presented to
students at the outset, with an indication that programs achieving
higher complexity levels will score more marks.

Vary the assignment substantially in each successive offering.
As mentioned earlier, my first dice game assignment was the
existing game of Groan [8]. I was preparing to use it again, in a
different class on a different campus, when I discovered that one
of my struggling students was being tutored by a friend who had
completed the earlier course. In the few remaining days before the
assignment was released to students I devised a completely new
dice game. Since then I have created several more games, and can
reuse the same sequence of assignments in a cycle of five years,
which appears to be sufficient to ensure the disappearance of most
copies of each specific game. Of course all dice games have
something in common, but, despite first appearances, their
overlaps are substantially less than their differences.

Have multiple test plans. This guideline does not apply for dice
game assignments, as they are run interactively rather than from
prepared input files.

There is never any assurance that all six guidelines can be applied
to any one assignment. However, their expected effect is
cumulative rather than integral, so even if only four or five of
them can be applied, the assignment is still less likely to be found
on the web or in the work of students who have completed the
course in recent years. Indeed, in 2016 two repeating students
expressed disappointment that they could reuse so little of their
assignment from the previous year.

6. DISCUSSION
When students have little to lose and a great deal to gain by
cheating, some of them will do so [9]. The guidelines described in
section 4 are designed with the intention of reducing two specific
forms of cheating: substantially copying solutions to the
assignment produced in preceding terms, and substantially

Author draft, pre-publication

copying programs found on the web. In summary, the approaches
are:

• start with something basic;

• add hidden complexity;

• add manifest complexity;

• add levels of complexity;

• vary the assignment substantially in each successive
offering; and

• have multiple test plans.

The cryptography assignment has never been conducted in its
most basic form, and no version has been repeated less than five
years after a prior offering, so it is not possible to compare
academic misconduct rates before and after its introduction.
However, very little academic misconduct has ever been detected
in the use of this assignment.

It would be naïve to think that this means there is no cheating. As
pointed out by D’Souza et al [2], there is an emerging marketplace
in customised software solutions that students can use to purchase
individually written solutions to assignments. Indeed, a simple
web search discovers a page at freelancer.com showing a student
putting out one version of this cryptography assignment to tender.
Although there was sufficient circumstantial evidence to deduce
the student’s identity, the university was not convinced, and the
student was never even asked to explain his outsourcing of this
and a number of other assignments. The instructor was left with
the minor consolation that at least the student had to pay for the
solutions.

Similar arrangements are also available closer to home. Zobel [12]
describes in detail a case in which a former student advertised his
assignment-writing services on the university’s notice-boards, and
it took an immense effort to attempt to put him out of business.

While there is no dissuading students who are determined to
cheat, there appears to be merit in the suggestions canvassed
earlier that instructors write ‘quality assignments’ and that they
vary their assignments each term. What we have done with this
case study is illustrate an approach that can be used to achieve
these goals.

A possible spin-off of the paper is that readers might become
aware of classical cryptography as a rich source of text-processing
assignment material. The author will be happy to share the
assignment materials (letter frequency files, plaintext passages,
enciphered texts, mystery bundles, etc) with members of the
computing education community.

7. REFERENCES
[1] Diana T Dadamo (1990). The correlation quiz: an aid in

curbing cheating in programming assignments. ACM
SIGCSE Bulletin 22:2, 52-54.

[2] Daryl D’Souza, Margaret Hamilton, and Michael Harris
(2007). Software development marketplaces – implications
for plagiarism. Ninth Australasian Computing Education
Conference (ACE2007), Ballarat, Australia, 27-33.

[3] Martin Dick, Judy Sheard, Cathy Bareiss, Janet Carter,
Donald Joyce, Trevor Harding, and Cary Laxer. (2003).
Addressing student cheating: definitions and solutions. ACM
SIGCSE Bulletin 35:2, 172-184.

[4] Sujata Garera and Jorge Vasconcelos (2009). Challenges in
teaching a graduate course in applied cryptography. ACM
SIGCSE Bulletin 41:2, 103-107.

[5] Lasse Hakulinen (2015). Gameful approaches for computer
science education. Doctoral dissertation, Aalto University.

[6] Dulal C Kar (2006). Teaching cryptography in an applied
computing program. Journal of Computing in Small
Colleges, 21:4, 119-126.

[7] Judy Sheard, Angela Carbone, and Martin Dick (2002).
Determination of factors which impact on IT students’
propensity to cheat. Fifth Australasian Computing Education
Conference (ACE2003), Adelaide, Australia, 119-126.

[8] Simon (1983). Quality programs for the BBC Micro. Micro
Press, Tunbridge Wells, UK.

[9] Simon (2005). Assessment in online courses – some
questions and a novel technique. Higher Education in a
changing world: Research and Development in Higher
Education 28, 501-506.

[10] Simon, Beth Cook, Judy Sheard, Angela Carbone, and Chris
Johnson (2013). Academic integrity: differences between
computing assessments and essays. 13th International
Conference on Computing Education Research (Koli Calling
2013), Koli, Finland, 23-32.

[11] Richard Spillman (2004). A software tool for teaching
classical & contemporary cryptology. CCSC Northwestern
Conference 2004, 114-124, Consortium for Computing
Sciences in Colleges.

[12] Justin Zobel (2004). “Uni Cheats Racket”: a case study in
plagiarism investigation. Sixth Australasian Computing
Education Conference (ACE2004), Dunedin, New Zealand,
357-365.

